
The Bloch density matrix for a localised oscillator in a magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L643

(http://iopscience.iop.org/0305-4470/18/11/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 17:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) JA43-I-645. Printed in Great Britain 

LElTER TO THE EDITOR 

The Bloch density matrix for a localised oscillator in a 
magnetic field 

N H March and M P Tosit 
Theoretical Chemistry Department, University of Oxford, 1 South Parks Road, Oxford 
OX1 3TG, UK 

Received 10 May 1985 

Abstract. A closed analytic form is obtained for the Bloch or canonical density matrix of 
a localised oscillator in a magnetic field of arbitrary strength, by solving the Bloch equation 
with the completeness boundary condition. 

In recent work on the melting of a Wigner electron crystal (1934, 1938) in an applied 
magnetic field, we noticed that it was possible to calculate the full canonical or Bloch 
density matrix for one localised Wigner oscillator. The purpose of this letter is to 
derive the explicit form of this density matrix C ( r o r P )  defined by 

where the 
Schrodinger equation 

and the corresponding one-electron energies si are solutions of the 

H$i = &i$i  (2) 

while P = ( k B T ) - ' .  In (2), the specific Hamiltonian we work with is 

H =  
2m (3) 

where the magnetic field X is applied along the z axis and the gauge is chosen such 
that the vector potential A is given by 

A = (- $Xy, ~ X X ,  0). 

The Bloch equation 

HrC(r0rP)  = -aC(rorP)/aP 

is then explicitly of the form 

where w = eX/2mc is the Larmor frequency. Equation (6) must be solved subject 
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to the initial condition 

C(rorO)= 8 ( r o - r ) ,  (7)  

which follows immediately from (1) by completeness. 
In the case when the force constant k is put equal to zero, Sondheimer and Wilson 

(1951) have given C ( r o r p )  explicitly. Our purpose here is to generalise their result to 
include the linear restoring force on the electron. To do so, we first generalise their 
assumptions to express the general structure of the density matrix as 

Given this structure, the four functions f, 4, g and h have been determined by 
substituting (8) into the Bloch equation ( 6 )  and requiring that the resulting equation 
is satisfied for all values of ro and r. Five equations result, namely 

a(g - h ) / a p  = -(2h2/m)(g2- h 2 ) + $ h o 4  (11) 

a4/ap = - (2h2/m)(g+h)4+2hw(g-h)  (12) 

a Inf lap = -(2h2/m)(g+ h ) ,  (13) 

b = ( 1  + k /mw2) ’” .  

and 

where b is defined by 

(14) 

We note first that one can immediately integrate (9) and (13) to yield, with a = hop, 

(15) g +  h = (mwb/2h) coth(ba + a )  

f =  B/sinh( ba + a ) ,  

and 

(16) 

where a and B are ‘constants’ of integration, i.e. independent of p but dependent on 
magnetic field and force constant. 

At this point, it is very helpful to invoke the work of Darwin (1931) who was 
concerned with the calculation of the diamagnetism of a free electron by means of the 
device of letting the force constant k vanish. In the course of that work, Darwin 
obtained the 4,’s and E ~ ’ S  from the Schrodinger equation (2) and in particular from 
the E ~ ’ S  he calculated the partition function Q = X i  exp(-P&,) as 

exp a 
= { exp[ (b  + 1 )  a ]  - 1}{ 1 - exp[ -( b - 1)a]} 

From (1) it is clear that since the 4,’s there are normalised we can write 

C(rrp )  d r  = Q I 
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and using the diagonal form of (8) in (18) we find that f and h are related by 

m i h ( P )  = ( 4 1 4 0 .  

Hence combining (19) with (15) and (16), and 

cosh a 
sinh( ba)  

and 

(19) 

using (17), we find 

mwb T cosh a 
g ( p )  = (X-TB) coth(ba)+?B 2 sinh(ba) '  

The function a has had to be put equal to zero to satisfy the delta function boundary 
condition (7). 

The next step is to use (10)-(12) to determine the phase + ( p )  and the function B 
depending on the force constant and magnetic field. We substitute therefore (20) and 
(21) into (10)-(12), to find 

and 

B = mwbl2.irh. (23) 

Thus, the Bloch density matrix is given explicitly by substituting the above results 
for g, h, C$ and f (with a = 0) into (8). It is readily verified that in the case of a free 
electron in a magnetic field, i.e. b tends to unity, the result of Sondheimer and Wilson 
(1951) is recovered, apart from a trivial factor describing free motion in the z direction. 
Switching off the magnetic field, the known diagonal form of C(r , rp)  (see, e.g., Stephen 
and Zalewski 1962) is readily regained. 

One of us (MPT) wishes to acknowledge support for the visit to Oxford from the 
Minister0 della hbbl ica  Istruzione, Italy. 
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